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An attempt is made to apply algebraic computational techniques to renormalization 
theory. Starting from the functional formalism for a scalar theory as well as for quantum 
electrodynamics we describe the LISP and FORTRAN programs which generate Feynman 
diagrams. Within the g@ scalar model, we integrate the Feynman integrals over the 
internal momenta and remove the divergences of this superrenormalizable theory. 
A LISP program performs these operations. The numerical evaluation of the multi- 
dimensional integrals is briefly discussed in the last part of this paper. 

I. INTRODUCTION 

The renormalization theory of quantum electrodynamics (QED) and of 
renormalizable scalar theories in the framework of functional formalism [l-4] 
gives rise to an algebraic algorithm for the generation of Feynman diagrams. 
One can determine within this approach the structure and the exact number of 
counter terms which are needed to get finite contributions from these diagrams. 
As is well known, the effective evaluation of these contributions is straightforward 
for the lower orders of the perturbative expansion but involves such an amount 
of manipulations for higher orders that the use of computers becomes necessary. 

The programming language LISP [5,6] is particularly well adapted to algebraic 
computations and allows us both to formulate and to perform the above-mentioned 
algorithm. Moreover, it has already been noted [7-91 that this language is suitable 
for the evaluation of Feynman diagrams. We have therefore used computers 
to try to perform the complete scheme of renormalization. This can be split into 
the following three parts: 

(i) Generation of Feynman diagrams and their relative counter terms at 

a given order; 
(ii) Integration over internal momenta and removal of divergences; 

(iii) Numerical evaluation of integrals over Feynman parameters. 
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To generate Feynman diagrams one can either use combinatorial analysis or 
start from the generating functional of propagators. In the first case FORTRAN 
Ianguage has been used to write down a program which works both for a specified 
interaction and for a mixture of interactions. In this way, one can get the set of 
graphs describing a given physical process. In the second case we closely follow 
the functional formalism approach in writing two LISP programs in which the 
functional derivation is represented by the connection of lines. We thus obtain 
the whole set of diagrams at a given order. At the present time, these programs 
work for the following interactions: QED, gQ3, and g@+, where @ and v are 
scalar fields. It is straightforward to generalize them to the g@ theories (a > 3). 
The results obtained within the first method can be recovered in the functional 
approach. Section II is devoted to point i and includes a physical introduction. 

Point ii, developed in Section III, is presented here for the convergent and 
logarithmically divergent diagrams of scalar theories. Let us note that the removal 
of higher divergences could easily be performed. In this approach we closely 
follow the Feynman method [IO]. Although the gG3 theory does not have any 
physical content, it reproduces the denominators of the integrals appearing in 
QED. This program is thus a part of a more general one dealing with QED. 

The last point (iii) has been carried out by means of Monte-Carlo methods in 
which the variance is reduced by a stratified sampling technique. Although this 
method is rough, it is the only one available at the present time which solves our 
problem. This program, written in FORTRAN, is briefly described in Section IV. 
All the results related to the gQ3 theory amplitudes are obtained within this 
approach. LISP programs have been run on the IBM 360-67 at Institut de 
Mathematiques Appliqutes de Grenoble and FORTRAN ones on the UNIVAC 1108 
at Orsay. 

II. GENERATION OF DIAGRAMS 

1. Physical Framework 

Consider the functional u,, which is defined in QED by 

1 - 
wJrl, ii, J; ml = exp - 2 I I Q(X) S$(x - x’; m) vs(x’) d4x d4x’ 

x exp [ - i 1 J,(x) d ‘“‘(x - x’) J,,(x’) d4x d4x’! (1) 

and for a scalar theory by 

u&J; K] = exp - i 
I s 

J(x) d (‘)(x - x’; /c) d4x d4x’ 
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In (l), r], 3, and J are the sources corresponding, respectively, to the fermion, 
antifermion, and photon fields, m is the electron mass, and the photon mass is 
set equal to zero. In (2) J is the source of the scalar field and K the square of the 
mass of the associated particle. PC) and A@) are the usual causal Green functions, 

s(“)(x; m) = - cti)b 1~3 
I d4k k2 +:I _ ie Wk. - 4. (4) 

yu are the Dirac matrices; p = l,..., 4. 
The sources belong to the C@(R4) space and all the formulas given here are thus 

mathematically well-defined. The U, are the generating functionals of vacuum 
expectation values of the chronological product of field operators [4]. The gener- 
ating functional of propagators for a scalar interaction of the type g@“, where g 
is the coupling constant, takes the form 

r is the interaction operator defined by 

r = (f d,“. 

(5) 

(6) 

In the same way u and r are defined in QED by 

where e is the electron charge and the u functionals are related to the scattering 
matrix. It is straightforward to show that the functional derivatives of U, once 
the sources have been set equal to zero, are expressed by the usual Feynman 
diagrams [4]. 

The renormalization procedure consists of the introduction into the lagrangian 
of the theory of enough counter terms to remove all the divergences of this theory. 
These counter terms appear in u as formal series. Once this procedure has been 
performed and u has been expanded in a formal series of the coupling constant, 
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we get the following recurrence formula which is valid both for QED and g@” 
(a < 5; for a > 4, the theory is not a renormalizable one): 

9%(O) = uo . 

LS%(~) denotes the finite part of the approximation of order k of U. The L@” are 
functional differential operators which depend on the counter terms introduced 
in U; they are defined in Ref. [l] for QED and in Ref. [2] for gQ3. From Eq. (9) 
one can obtain the finite contributions of the graphs of order k once the (n - 1) 
first finite contributions are known. Equation (9) also gives an algebraic algorithm 
useful to construct all the renormalized diagrams at a given order; if we set 
9”’ s 0 (p = I,..., n) unrenormalized graphs are obtained. 

2. LISP programs 

We want to generate all the unrenormalized Feynman diagrams at a given 
order of perturbative expansion. This means that the interaction and the number 
of vertices are fixed. It is straightforward to generalize the programs to the case of 
renormalized diagrams. In Eq. (9) Pz.P) is the product of u. with a sum of graphs; 
thus when P is applied to 9% (%) the functional derivatives act either on a graph 
or on U, . The algebraic algorithm used to construct graphs can be stated as follows: 

(i) A functional derivative applied to U, creates an external line; 

(ii) When it is applied to an external line of a diagram it changes it into an 
internal line; 

(iii) It has no effect on an internal line; 

(iv) All the lines created or transformed by the derivatives involved in r 
are connected at a new vertex. 

In order to characterize a diagram we use the following notation. A line of a 
specified type is associated to each source; for example, in QED one has three 
different types which are denoted by A, B, C and correspond, respectively, to the 
fermion (T), antifermion (+j) and photon (J) sources. An external line of type A 
connected to the vertex k is defined by the list (k A). An internal line comes from 
the derivation of an external line and is thus obtained by connecting two external 
lines; consequently, a photon line which joins the vertex k to the vertex j will be 
represented by a list of the form (k C j C), while Eq. (1) shows that ane lectron 
internal line between the same vertices will be either (k A j B) or (k B j A). Moreover, 
the fact that types A and B are different means that the electron lines are oriented. 
By convention, the external lines are placed at the beginning of the list and are 
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ordered with respect to their type. In QED we have choosen the order A, B, C. 
For example, the vertex of the third order is 

((2 A)(3 B)(l C)(l A 2 B)(l B 3 A)(2 C 3 C)), (10) 

when the sources 7, ;i, and J are associated, respectively, to the vertices 2,3, 1. 
In Eq. (9) ~3%~~) is now of the form 

.!3’&) = c (Gg,,), 
z 

(11) 

where the Gi are the graphs of order n. Let D be one of the Gi . The list 
((n + 1 A)@ + 1 B)(n + 1 C)) re p resents the vertex of order (n + 1). To obtain 
all the diagrams of order (n + 1) coming from D one has to apply the interaction 
operator P both on D and on u0 . According to the algorithm and to the choosen 
representation, the generation of these diagrams comes from the following 
operations: 

(i) One of the external lines of the vertex (n + 1) is connected to an external 
line of D and the two others remain external; this occurs when one derivative 
is applied to D and the two others to u,, . 

(ii) Two external lines of the vertex (n + 1) are connected to external lines 
of D and the third one remains external. 

(iii) All the external lines of the vertex (n + 1) are connected to external 
lines of D. 

(iv) All the lines of the vertex (n + 1) remain external (the three derivatives 
act on uO) and thus we get a disconnected graph. 

A first program, called DIAG I, performs these operations with regard to the 
following possible connections: C-C, A-B, and B-A. It also includes a function 
which arranges the lines according to the choosen representation of diagrams. 
DIAG I gives rise to the whole set of graphs appearing at a given order. With a 
slight modification, the disconnected diagrams can be deleted. 

This program can work under two different circumstances. In the first one, 
a graph D of order k and the vertex (k + 1) are given in the input and we get all 
the diagrams of order (k + 1) coming from D. In the second, a function which 
builds up the vertices from order 1 to IZ is added to DIAG I and all the diagrams 
at every order from 2 to IZ are obtained. In this case we only have to give the value 
of n in the input. Diagrams are printed in a form similar to (10). 

Several diagrams obtained in this way will be identical; in fact, we again get 
the numerical coefficients which were obtained by hand for lowers orders [3]. 
In order to extract the different diagrams another program, called DIAG II, 
has been written. It acts according to the following scheme. The list of graphs 
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at a given order is worked out by DIAG I, the first graph of this list is selected, 
and all its symmetric diagrams are built up by permutations on the labels of the 
vertices. Then one has only to eliminate from the previous list all the diagrams 
appearing in the list of symmetric ones and to go on with the next graph. DIAG II 
also includes a function which cancels tadpole type diagrams and applies Furry’s 
theorem [Ill. The input is the same as for DIAG I except that if one wants to 
read graphs one has to read a whole order. Finally, a function available both 
with DIAG I or II allows us to extract the diagrams describing a given physical 
process. 

In order to give an idea of the efficiency of this method of enumeration of 
diagrams let us note that DIAG I needs about 150 set of machine time to go 
from the sixth- to the seventh-order connected diagrams, while DIAG II needs 
12 set to give diagrams up to the third order. 

These programs have been described for QED. To use them for the gQ3 theory 
we have only to identify the types attached to the three lines. The straightforward 
generalization to g@” or gQ5 will be written if there is any request for it. 

An interesting feature of the above framework is that the generating functional 
provides a powerful way to solve the problem of generation of diagrams. 

3. FORTRAN prO@lmS 

It is obviously possible to construct unrenormalized diagrams by using only 
combinatorial analysis. This program, called FRENEY, acts in the following way. 
Given either an interaction or a mixture of interactions, a number of vertices, 
a number of external lines, and their types it constructs all the corresponding 
graphs. 

One introduces the matrix iV(i,j), 1 < i ,( IS, 1 < j < IT, where i is the index 
of rows, IS is the number of vertices, j is the index of columns, and ZT/2 is the 
number of lines involved in the interaction. 

For a mixture of interactions, IT/2 is the greater number of lines connected 
to a vertex. To each kind of field appearing in an interaction is associated a line 
of definite type which is characterized by a positive integer. A line of type b 
connected to the vertex k will be labeled by the couple (k b). All the lines of the 
vertex k lie in the k-th row of N, which is simply the juxtaposition of all the 
couples (k bzJ, 

The program needs the following ordering of types: bzc < bal+z . An internal line 
is taken to be the connection of two couples of a same type; the construction 
of diagrams will then consist in all the possible connections of such couples. 
The external lines are defined to be lines which cannot be connected: they are 
expressed in N by couples (0 0). Let us remark that one has first to write N and 
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then to fix the external lines. The matrix N’ obtained in this way is the one which 
has to be given in the input. For example, for the interaction goaT when q~ is 
said to be of type 1 and @ of type 2, one gets at the 4th order, 

If we ask for the self-energies of the @ field N’ has the form 

11 00 12 
N’ = 21 00 22 

i i 
31 32 32 * 
41 42 42 

External lines have to be set in the first rows. In order to construct a graph one 
has to determine its internal lines. In the output a diagram is given by a three- 
column matrix, denoted by M. A row of M is of the form (k a h) and represents 
a line of type a connecting the vertices k to h. It is obtained when the (k a) and (ha) 
external lines are connected. When a graph is generated we have to determine 
whether it is a new one or not. It will be deleted if its associated M matrix only 
differs from one already obtained by a permutation of the rows. It will also be 
eliminated if it is a symmetric diagram of a previous one. In order to analyse 
this possibility we have to generate the diagrams coming from every possible 
permutations of internal vertices and to compare them at each step of this genera- 
tion with the diagrams already obtained. To perform these eliminations we have 
imposed a special ordering on the elements of M [12]. 

It needs 72 set on a UNIVAC 1108 to get the vertices of the seventh order in 
QED and 13 set to get the electron self-energies of the sixth order, An important 
feature of this approach is that we get the right number of diagrams appearing 
in the scattering matrix. 

III. COMPUTATION OF DIAGRAMS 

To compute graphs we have closely followed the well-known Feynman method 
[lo]. A LISP program, called ACOFIS, realizes it for the scalar amplitudes which 
are at most logarithmically divergent. A scalar diagram is expressed by an integral 
such as 
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where I is the number of independent loops in the graph and the ki are the internal 
momenta associated with these loops. The ai1 are the propagators related to the 
internal lines. The ai are of the form 

ai = (c (VP, + c q,k,)’ + ‘9 , (13) 

where the metric has signature (+ + + -), 5,. and vs have the values fl or 0, 
and the pr are the external momenta. The conservation of momenta at each 
vertex has been imposed in (12). It determines the p,. and k, which enter into the 
Ui . K$ is the squared mass of the corresponding particle. 

Starting from the list of propagators which has to be given in the input, the 
Feynman parameters 01~ are introduced by means of the identity 

(14) 

Then we look for the terms to be shifted in order to get a quadratic form in the 
integration variables ki and perform the corresponding translations on these 
variables. 

At this step we have to consider whether the integral is finite or not. If it is, 
the formula 

s (k2)@ 
(k2 + AZ)” d4k = ~ B(m, n - m) (n > m > 0), (1% 

where B(p, 4) is the beta function, immediately gives an integral over the Feynman 
parameters which is the contribution from the computed graph. 

In the g@ model the only irreducible divergent diagram is the second-order 
self-energy. It is logarithmically divergent. If n(p2) denotes its contribution, 
according to renormalization theory its finite part will be defined by 

h(p2) = ?T(p’) - 7i(p2 = -K). (16) 

Then the use of the subtraction identity 

(17) 

which increases the power of the denominator, makes it possible to apply (15). 
What has to be noted is that, due to (9), subdiagrams have to be replaced by 

their finite parts and hence the order of integration over the ki is irrelevant. 
The program consists of 16 simple functions. In the input we need to give the 

propagators, the internal and external momenta, the masses, and the Feynman 
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parameters. The convergent or logarithmically divergent diagrams can then be 
computed for any scalar theory. 

The results calculated by hand within the gP model [3] have been recovered 
in this approach. We have also checked, in the same model, the asymptotic 
behaviour of the Feynman amplitudes at large momentum transfer. Results are 
plotted in Ref. [12]. To compute all the self-energies and vertices up to the seventh 
order takes only 80 set of machine time. This emphasizes the efficiency of the LISP 
technique. 

Apart from the cancellation of logarithmic divergences this program has been 
extended to the case of QED and used to extract the contributions from irreducible 
vertices to the anomalous magnetic moment of the electron. ACOFIS is used to 
compute the denominators. 

IV. NUMERICAL EVALUATION 

The last point to consider is the numerical evaluation of integrals over Feynman 
parameters. This is done using a FORTRAN program based on Monte-Carlo type 
methods. 

When the Monte-Carlo method does not give a good accuracy, we use the 
following variance-reducing technique. We split the integration domain into 
subcubes and ask for an upper limit of the accuracy in each subcube. When the 
accuracy is not good enough we can either increase the number of random points 
in the corresponding domain or again split this domain into smaller subcubes. 

The accuracy of the values obtained in this way depends obviously on the 
analytic structure of the integrand, but is at worst 10 ‘A. An exact calculation 
within the g@ model of the contribution of the fourth-order Delbtick type 
diagram reported in Ref. [13] has allowed us to check our program. More precisely, 
we have made use of the equation (11) in Ref. [13]. This equation depends on 
dilogarithm functions, which have been computed according to the method 
developed in Ref. [14]. Using the same parametrization in our approach we have 
checked results with an accuracy of about 1%. For example, a value obtained 
using 50,000 random points is 0.09264 & 0.00085, while the correct value is 
0.09261. Thus our results are in agreement with those obtained analytically. 
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